
Low-loss TCP/IP Header Compressionfor Wireless NetworksMikael Degermarky, Mathias Engany, Bj�orn Nordgreny, and Stephen Pinkyzfmicke, engan, bcn, steveg@cdt.luth.seyCDT/Department of Computer Science zSwedish Institute of Computer ScienceLule�a University PO box 1263S-971 87 Lule�a, Sweden S-164 28 Kista, SwedenAbstractWireless is becoming a popular way to connect mo-bile computers to the Internet and other networks. Thebandwidth of wireless links will probably always be lim-ited due to properties of the physical medium and regula-tory limits on the use of frequencies for radio communi-cation. Therefore, it is necessary for network protocolsto utilize the available bandwidth e�ciently.Headers of IP packets are growing and the bandwidthrequired for transmitting headers is increasing. With thecoming of IPv6 the address size increases from 4 to 16bytes and the basic IP header increases from 20 to 40bytes. Moreover, most mobility schemes tunnel packetsaddressed to mobile hosts by adding an extra IP headeror extra routing information, typically increasing thesize of TCP/IPv4 headers to 60 bytes and TCP/IPv6headers to 100 bytes.In this paper, we provide new header compressionschemes for UDP/IP and TCP/IP protocols. We showhow to reduce the size of UDP/IP headers by an orderof magnitude, down to four to �ve bytes. Our methodworks over simplex links, lossy links, multi-access links,and supports multicast communication. We also showhow to generalize the most commonly used method forheader compression for TCP/IPv4, developed by VanJacobson, to IPv6 and multiple IP headers. The result-ing scheme unfortunately reduces TCP throughput overlossy links due to unfavorable interaction with TCP'scongestion control mechanisms. However, by adding two�This work was supported by grants from the Centre for Dis-tance Spanning Technology (CDT), Lule�a, Sweden, and EricssonRadio Systems AB.

simple mechanisms the potential gain from header com-pression can be realized over lossy wireless networks aswell as point-to-point modem links.1 IntroductionAn increasing number of end-systems are being con-nected to the global communication infrastructure overrelatively low-speed wireless links. This trend is largelydriven by users that carry their computers around andneed a convenient way to connect to the Internet orother networks. In the core of the global communi-cation infrastructure, optic �bers provide high speeds,high reliability and low bit-error rates. But an increas-ing number of �rst and last hops in the network areusing wireless technology with limited bandwidth, inter-mittent connectivity, and relatively high bit-error rates.The TCP/IP protocol suite needs to be augmented toaccommodate this type of link and need mechanisms toutilize them e�ciently.In the local area, several commercial wireless LANtechnologies o�er wireless communication at speeds of 1-2 Mbit/s. Infrared technologies provide similar speeds.In the wide area, several cellular phone technologies of-fers data channels with speeds of a few kbit/s, for exam-ple the European GSM at 9600 bit/s and CDPD at 19.2kbit/s. Even though there are plans to increase band-width, in the foreseeable future it is likely that wirelessbandwidth, especially in the wide area and outside pop-ulation centers, will be a scarce resource due to proper-ties of the physical medium and regulatory limitationson the use of radio frequencies.Mobile users on wireless networks will want the sameservices as they already have when using stationarycomputers attached to the wired Internet. Therefore itis important to utilize the limited bandwidth over wire-less links e�ciently. However, two trends threaten todecrease the e�ciency of Internet technology over wire-less links. The �rst is the coming of the next generationof the Internet Protocol, IPv6. With IPv6 the address



size increases from 4 bytes to 16 bytes, and the basicIP header from 20 bytes to 40 bytes. In addition, var-ious extension headers can be added to the basic IPv6header to provide extra routing information, authenti-cation, etc. IPv6 with its large headers is clearly in-tended for networks where there is plenty of bandwidthand packets are large so that the header overhead isnegligible.The second trend is mobility. There are severalschemes for allowing a host to keep its original IP ad-dress even though it has moved to a di�erent part of thenetwork. These schemes usually involve a home agentin the home subnet to capture packets addressed to themobile computer and tunnel them to where the mobilecomputer happens to be attached.Tunneling is done by encapsulating the originalpacket with an extra IP header. With one level of en-capsulation the minimal header of a TCP segment is100 bytes1. In the latest proposal for Mobile IPv6, themobile host can inform its correspondents about its cur-rent location. This allows correspondents to optimizethe route by not visiting the home network. Correspon-dents add a one-address routing header to the basic IPv6header, adding 24 bytes to the header for a total of 84bytes for a TCP segment. This procedure increases theheader size over the �rst hop, where it would other-wise be 60 bytes, and decreases it over the last hop.In the latest proposal for mobile IPv6, all headers aretransferred over the wireless links. While the mobil-ity protocols are essential for convenient attachment ofmobile computers to the Internet, the large headers aredetrimental when bandwidth is limited.In this paper we show how large headers of 50 bytesor more can be reduced in size to 4-5 bytes. The e�-ciency of our scheme is based on there being consecutiveheaders belonging to the same packet stream that areidentical or changes seldom during the life of the packetstream. This allows the upstream node to send a shortindex identifying a previously sent header stored as statein the downstream node instead of sending the completeheader. Header compression has several important ben-e�ts for the user:1. When packets contain little data the overhead oflarge headers can cause unacceptable delays. ForTELNET, a typical packet contains one byte ofdata. The minimum IPv6/TCP header is 60 bytes,adding an encapsulating IP header for mobility in-creases the header size to 100 bytes. Transmittingthis header over a 9600 bit/s GSM link takes 84ms resulting in a round-trip time (for the echoedcharacter) of at least 168 ms. This results in toolong response times, around 100 ms is acceptable,and the system will appear sluggish. By reducing1For IPv6. 60 bytes for IPv4.

the header to 4-5 bytes the round-trip time overthe GSM link can be reduced to less than 10 mswhich allows for queuing and propagation delays inthe rest of the path.2. The overhead of large headers can be prohibitivewhen many small packets are sent over a link withlimited bandwidth. The acceptable end-to-end de-lay budget when people talk to each other can beas low as 150 ms, depending on the situation. Thepropagation delay (due to the limited speed of lightin a �ber) is ideally about 20 ms across USA and100 ms to the farthest point in a global network.Since audio can have a relatively low data rate,around 10-14 kbit/s, the time required to �ll apacket with audio samples is signi�cant. To al-low for queuing delay and end system processingit is necessary to use small packets that are �lledquickly if the delay budget is to be met. How-ever, sending more packets increase header over-head. Table 1 shows the bandwidth consumedby headers for various headers and times betweenpackets. Optim means an IPv6/UDP header withHeader bw, kbit/sPkt interval 80 ms 40 ms 20 msIPv4/UDP 2.8 5.6 11.2IPv6/UDP 4.8 9.6 19.2optim 7.2 14.4 28.8tunnel 8.8 17.6 35.2routing 12.0 24.0 48.0compr (4 byte) 0.4 0.8 1.6Table 1: Required bandwidth for headers, kbit/sa one-address routing header; used for example inMobile IPv6 route optimization. Tunnel means anIPv6/UDP header encapsulated in an IPv6 header;used for example in Mobile IPv6. Routing meansan IPv6/UDP header with a four address routingheader. Compr means the compressed version ofIPv6/UDP, optim, tunnel, or routing. For compar-ison, the bandwidth needed for the actual audiosamples is somewhere between 10 kbit/s for GSMquality to 128 kbit/s for CD quality [13, p. 179]. Sowhen tunneling for mobility, at least 45.2 kbit/s isrequired for GSM quality with 20 ms between pack-ets. With header compression this can be reducedto 11.6 kbit/s.3. TCP bulk transfers over the wide area today typ-ically use 512 byte segments. With tunneling,the TCP/IPv6 header is 100 bytes. Reducing theheader to 5 bytes reduces the overhead from 19.5per cent to less than one per cent, thus reducing the



total time required for the transfer. With smallersegments or larger headers2 the bene�t from headercompression is even more pronounced.An IPv6 node is required to perform path MTU3discovery when sending datagrams larger than 596bytes because datagrams are not fragmented by thenetwork in IPv6. A node could restrict itself tonever send datagrams larger than 596 bytes, butit is likely that most transfers will use larger data-grams. If datagrams are 1500 bytes4, header com-pression reduces header overhead from 7.1 per centto 0.4 per cent.4. Because fewer bits per packet are transmitted withheader compression, the packet loss rate over lossylinks is reduced. This results in higher quality ofservice for real-time tra�c and higher throughputfor TCP bulk transfers.The structure of our paper is as follows. After pro-viding motivation for header compression for IPv6, wedescribe our new soft-state-based header compressionalgorithm for UDP/IPv6, with its support for simplexstreams, etc. We then show with simulation results thatthe traditional scheme for TCP/IP header compressiondoes not work well over lossy-links such as wireless.We suggest additional mechanisms for improving per-formance on a high loss environment, and show theirviability with simulation results. We then report onthe implementation status of our header compressionscheme and conclude with a section on related work anda summary.2 Header compressionThe key observation that allows e�cient header com-pression is that in a packet stream, most �elds are iden-tical in headers of consecutive packets. For example,�gure 1 show a UDP/IPv6 header with the �elds ex-pected to stay the same colored grey. As a �rst ap-proximation, you may think of a packet stream as allpackets sent from a particular source address and portto a particular destination address and port using thesame transport protocol.With this de�nition of packet stream, in �gure 1 ad-dresses and port numbers will clearly be the same in allpackets belonging to the same stream. The IP versionis 6 for IPv6 and the Next Hdr �eld will have the valuerepresenting UDP. If the Flow Label �eld is nonzero, thePrio �eld should by speci�cation not change frequently .If the Flow Label �eld is zero, it is possible for the Prio�eld to change frequently, but if it does, the de�nition ofwhat a packet stream is can be changed slightly so that2An IPv6 routing header containing 24 addresses is 392 byteslong!3The path MTU is the maximum size of packets transmittedover the path.4The maximum size of Ethernet frames is 1500 bytes.
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Destination PortFigure 1: Unchanging �elds of UDP/IPv6 packet.packets with di�erent values of the Prio �eld belong todi�erent packet streams. The Hop Limit �eld is initial-ized to a �xed value at the sender and is decrementedby one by each router forwarding the packet. Becausepackets usually follow the same path through the net-work, the value of the �eld will change only when routeschange.The Payload length and Length �elds give the size ofthe packet in bytes. Those �elds are not really neededsince that information can be deduced from the size ofthe link-level frame carrying a packet, provided there isno padding of that frame.The only remaining �eld is the UDP checksum. Itcovers the payload and the pseudo header, the latterconsisting of the Nxt Hdr �eld, the addresses, the portnumbers and the UDP Length. Because the checksum�eld is computed from the payload, it will change frompacket to packet.To compress the headers of a packet stream a com-pressor sends a packet with a full header, essentiallya regular header establishing an association betweenthe non-changing �elds of the header and a compres-sion identi�er, CID, a small unique number also carriedby compressed headers. The full header is stored ascompression state by the decompressor. The CIDs incompressed headers are used to lookup the appropriatecompression state to use for decompression. In a sense,all �elds in the compression state is replaced by the CID.Figure 2 shows full and compressed headers. The size ofa packet might be optimized for the MTU5 of the link,to avoid increasing the packet size for full headers, theCID is carried in length �elds. Full UDP headers also5MaximumTransmissionUnit, maximum size of packets trans-mitted over the link.



Checksum could be computed from payload and values of
decompressed header, but is always included in the 
compressed header as a safety precaution.

Grey fields of full header stored as compression state.
Generation field ensures correct matching of compressed
and full headers for decompression.
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Figure 2: Full and compressed headers.contain a generation �eld used for detection of obsoletecompression state (see section 3).All �elds in headers can be classi�ed into one ofthe following four categories depending on how theyare expected to change between consecutive headers ina packet stream. [8] provides such classi�cations forIPv6 basic and extension headers, IPv4, TCP, and UDPheaders.nochange The �eld is not expected to change. Anychange means that a full header must be sent toupdate the compression state.inferredThe �eld contains a value that can be inferredfrom other values, for example the size of the framecarrying the packet, and thus need not be includedin compressed headers.delta The �eld may change often but usually the dif-ference from the �eld in the previous header issmall, so that it is cheaper to send the change fromthe previous value rather than the current value.This type of compression is used for �elds in TCPheaders only.random The �eld is included as-is in compressedheaders, usually because it changes unpredictably.Because a full header must be sent whenever there is achange in nochange �elds, it is essential that packetsare grouped into packet streams such that changes occurseldomly within each packet stream.The compression method outlined above would workvery well in the ideal case of a lossless link. In the realworld bit-errors will result in lost packets and the lossof a full header can cause inconsistent compression stateat compressor and decompressor, resulting in incorrect

decompression, expanding headers to be di�erent thanthey were before compressing them. A header compres-sion method needs mechanisms to avoid incorrect de-compression due to inconsistent compression state andit needs to update the compression state if it shouldbecome inconsistent. Our scheme use di�erent mecha-nisms for UDP and TCP, covered in sections 3 and 4.If header compression would result in signi�cantlyincreased loss rates, the gains from the reduced headersize could be less than the reduced throughput due toloss. All in all, header compression would then decreasethroughput. In the following, we show how this can beavoided and the potential gain from header compressioncan be realized even over lossy links.3 UDP header compressionFor UDP packet streams the compressor will send fullheaders periodically to refresh the compression state. Ifnot refreshed, the compression state is garbage collectedaway. This is an application of the soft state principleintroduced by Clark [3] and used for example in theRSVP [19] resource reservation setup protocol, and thePIM [6] multicast routing protocol.The periodic refreshes of soft state provide the fol-lowing advantages.� If the �rst full header is lost, the decompressor caninstall proper compression state when a refreshingheader arrives. This is also true when there is achange in a nochange �eld and the resulting fullheader is lost.� When a decompressor is temporarily disconnectedfrom the compressor, a common situation for wire-less, it can install proper compression state whenthe connection is resumed and a refresh header ar-rives.



� In multicast groups, periodic refreshes allow newreceivers to install compression state without ex-plicit communication with the compressor.� The scheme can be used over simplex links as noupstream messages are necessary.3.1 Header GenerationsWe do not use incremental encoding of any header�elds that can be present in the header of a UDP packet.This means that loss of a compressed header will not in-validate the compression state. It is only loss of a fullheader that would change the compression state thatcan result in inconsistent compression state and incor-rect decompression.To avoid such incorrect decompression, each versionof the compression state is associated with a generation,represented by a small number, carried by full head-ers that install or refresh that compression state andin headers that were compressed using it. Wheneverthe compression state changes, the generation numberis incremented. This allows a decompressor to detectwhen its compression state is out of date by comparingits generation to the generation in compressed headers.When the compression state is out of date, the decom-pressor may drop or store packets until a full headerinstalls proper compression state.3.2 Compression Slow-StartTo avoid long periods of packet discard when fullheaders are lost, the refresh interval should be short.To get high compression rates, however, the refresh in-terval should be long. We use a new mechanism we callcompression slow-start to achieve both these goals. Thecompressor starts with a very short interval between fullheaders, one packet with a compressed header, whencompression begins and when a header changes. Therefresh interval is then exponentially increased in sizewith each refresh until the steady state refresh periodis reached. Figure 3 illustrates the slow-start mecha-
Change Full headersFigure 3: Compression slow-start after header change. Allrefresh headers carry the same generation number.nism, tall lines represents packets with full headers andshort lines packets with compressed headers. If the �rstpacket is lost, the compression state will be synchro-nized by the third packet and only a single packet with

a compressed header must be discarded or stored tem-porarily. If the �rst three packets are lost, two addi-tional packets must be discarded or stored, etc. We seethat when the full header that updates the compres-sion state after a change is lost in an error burst of xpackets, at most x � 1 packets are discarded or storedtemporarily due to obsolete compression state.With the slow-start mechanism, choosing the inter-val between header refreshes becomes a tradeo� betweenthe desired compression rate and how long it is accept-able to wait before packets start coming through afterjoining a multicast group or coming out from a radioshadow. We propose a time limit of at most 5 secondsbetween full headers and a maximum number of 256compressed headers between full headers. These limitsare approximately equal when packets are 20 ms apart.3.3 Soft-stateWe are able to get soft state by trading o� someheader compression. A hard-state based scheme doesnot send refresh messages and so will get more compres-sion. The amount of compression lost in our soft stateapproach, however, is minimal. Figure 4 shows the
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when used for protocols where a signi�cant fraction ofcorrupted packets can be delivered to the compressor.It is su�cient for compression state to be installedproperly in the decompressor if one full header is trans-mitted undamaged over the link. What is needed isa way to detect bit-errors in full headers. The com-pressor extends the UDP checksum to cover the wholefull header rather than just the pseudo-header sincethe pseudo-header doesn't cover all the �elds in the IPheader. The decompressor then performs the check-sum before storing a header as compression state. Inthis manner erroneous compression state will not be in-stalled in the decompressor and no headers will be ex-panded to contain bit-errors. The decompressor restoresthe original UDP checksum before passing the packet upto IP.Once the compression state is installed, there will beno extra packet losses with UDP header compression. Ifthe decompressor temporarily stores packets for whichit does not have proper compression state and expandstheir headers when a matching full header arrives, therewill be no packet loss related to header compression.The stored packets will be delayed, however, and hardreal-time applications may not be able to utilize them,although adaptive applications might.3.5 Reduced packet loss rateHeader compression reduces the number of bits thatare transmitted over a link. So for a given bit-error ratethe number of transmitted packets containing bit-errorsis reduced by header compression. This implies thatheader compression will improve the quality of serviceover wireless links with high bit-error rates, especiallywhen packets are small, so that the header is a signi�-cant fraction of the whole packet.
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the bit-error rate of the media with and without headercompression. The packet loss rates for compressed pack-ets assume that the compression state has been success-fully installed. Compressed headers, C, are 4 bytes, fulland regular headers, H, are 48 bytes (IPv6/UDP). D isthe size of the payload.Thus, our header compression scheme for UDP/IP inaddition to decreasing the required header bandwidth,also reduces the rate of packet loss. The packet lossrate is decreased in direct proportion to the decrease inpacket size due to header compression. For the 36 bytepayload, the packet loss rate is decreased by 52% andfor the 100 byte payload by 30%. With tunneling, thepacket loss rate decreases by 68% and 45%, respectively.If bit-errors occur in bursts whose length is of thesame order as the packet size, there will be little orno improvement in the packet loss frequency because ofheader compression. The numbers above assume uni-formly distributed bit-errors.4 TCP header compressionThe currently used header compression method forTCP/IPv4 is by Jacobson [10], and is known as VJheader compression. Jacobson carefully analyzes howthe various �elds in the TCP header change betweenconsecutive packets in a TCP connection. Utilizingthis knowledge, his method can reduce the size of aTCP/IPv4 header to 3{6 bytes.It is straightforward to extend VJ header compres-sion to TCP/IPv6. It is important to do this since notonly are the base headers in IPv6 larger than IPv4, mul-tiple headers needed to support Mobile IPv6[15], i.e.,routing headers with 16 byte addresses tunneled to themobile host, will produce a large overhead on wirelessnetworks.4.1 Compression of TCP header
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PIC S A W UFigure 8: Flag byte of compressed TCP header.di�erences of 0 or 256-65535 are represented by threebytes.A ag byte, see �gure 8, encodes the �elds that havechanged. Thus no values need to be transmitted for�elds that do not change. The S, A, and W bits ofthe ag byte corresponds to the Sequence Number, Ac-knowledgment Number, and Window Size �elds of theTCP header. The I bit is associated with an identi�ca-tion �eld in the IPv4 header, encoded in the same wayas the previously mentioned �elds. The U and P bitsin the ag byte are copies of the U and P ags in theTCP header. The Urgent Pointer �eld is transmittedonly when the U bit is set. Finally, the C bit allows the8-bit CID to be compressed away when several consecu-tive packets belong to the same TCP connection. If theC bit is zero, the CID is the same as on the previouspacket. The TCP checksum is transmitted unmodi�ed.VJ header compression recognizes two special casesthat are very common for the data stream of bulk datatransfers and interactive remote login sessions, respec-tively. Using special encodings of the ag byte, the re-sulting compressed header is then four bytes, one bytefor the ag byte, one byte of the CID, and the two byteTCP checksum.4.2 Updating TCP compression stateVJ header compression uses a di�erential encodingtechnique called delta encoding which means that dif-ferences in the �elds are sent rather than the �eldsthemselves. Using delta encoding implies that the com-pression state stored in the decompressor changes foreach header. When a header is lost, the compressionstate of the decompressor is not incremented properlyand the compressor and decompressor will have incon-sistent state. This is di�erent from UDP where loss ofcompressed headers do not make the state inconsistent.Inconsistent compression state for TCP/IP streams willresult in a situation where sequence numbers and/oracknowledgment numbers of decompressed headers areo� by some number k, typically the size of the missingsegment. The TCP receiver (sender) will compute theTCP checksum which reliably detects such errors andthe segment (acknowledgment) will be discarded by theTCP receiver (sender).TCP receivers do not send acknowledgments for dis-carded segments, and TCP senders do not use discardedacknowledgments, so the TCP sender will eventually geta timeout signal and retransmit. The compressor peeksinto TCP segments and acknowledgments and detects



when TCP retransmits, and then sends a full header.The full header updates the compression state at thedecompressor and subsequent headers are decompressedcorrectly.4.3 Simulated scenarios
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The curves show performance with and withoutheader compression, for bit-error rates of 2�10�7 (�gure10) and 2 � 10�6 (�gure 11). With the lower bit-errorrate, header compression provides higher throughputcorresponding to the reduced packet size, about 16%.With higher bit-error rates, throughput is better withheader compression than without. VJ header compres-sion was developed to be used over low-speed links, andeven with relatively high bit-error rates, it performs wellover such links.In Figure 10 the curve for header compression hasseveral dips, with big dips around 230 and 360 sec-onds. These are the result of packet losses. With everyloss, acknowledgments stop coming back and the TCPsender will take a timeout before the retransmit whichrepairs the compression state. There is no similar dipin the curve for no header compression. This is becauseTCP's fast retransmit algorithm is usually able to repaira single lost segment without having to wait for a time-out signal. The fast retransmit algorithm occurs whenthe TCP sender deduces from a small number of du-plicate acknowledgments (usually three) that a segmenthas been lost, and so retransmits the missing segment.Which segment is missing can be deduced from the du-plicate acknowledgments.Fast retransmit does not work with VJ header com-pression. A lost data segment causes mismatching com-pression state between compressor and decompressor,and subsequent data segments will be discarded by theTCP receiver. No acknowledgments will be sent until aretransmission updates the compression state.In Figure 11, the curve for header compression hasa large dip at 230 seconds. This is because the con-gestion control mechanisms of TCP are triggered by re-peated losses and TCP reduces its sending rate. With-out header compression, fast retransmit is able to repairlost segments and there are no noticeable dips.4.5 VJ header compression over medium-bandwidth linksWith the coming of IPv6 and Mobile IP there is aneed to conserve bandwidth even over medium-speedlinks, with bit-rates of a few Mbit/s. Moreover, manyTCP connections will be across large geographic dis-tances, for example between Europe and USA, and thesepaths can have signi�cant delays due to propagation,queueing, and processing delays in routers. Figure 12shows the e�ects of VJ header compression on a bulktransfer in the WLAN scenario with a moderate bit-error rate on the wireless link. The throughput withheader compression drops signi�cantly, from 620 kbit/sto 470 kbit/s or about 25%.One reason for the reduced throughput is that thedelay{bandwidth product is much larger in this sce-nario. The sending window needs to be at least 50kbytes to �ll the link. With header compression, every
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Figure 12: Delivered 512 byte segments across WLANtopology with bit-error rate 2� 10�7.lost segment results in losing a timeout interval's worthof segments due to inconsistent compression state. Atimeout has to occur before retransmission and updateof the compression state, and the timeout interval is atleast equivalent to a round-trip's worth of data, i.e., atleast 50 kbyte. With high bit-error rates, this e�ectalone can severely reduce throughput.Bit-error rate 10�8 10�7 10�6Without Hdr CompSegments btw loss (avg) 20400 2040 204Loss rate 0.0049% 0.049% 0.49%With Hdr CompSegments btw loss (avg) 24200 2420 242Loss rate (incl window) 0.40% 4.0% 40%Figure 13: E�ects of Header Compression on loss rate.The table in �gure 13 show some calculations of thee�ects of packet loss in the WLAN topology when thesending window is assumed to be constant at 50 kbytes.The segment size is 512 bytes and header compression isassumed to reduce the header to 5 bytes. The 50 kbytewindow is equivalent to 98 segments. Without headercompression, the fast repair mechanism is assumed to beable to repair a loss without triggering a timeout. Withheader compression, the timeout period is assumed tobe exactly equivalent to the round-trip time of 220 ms,which is very optimistic.Another reason for the reduced throughput of �gure12 is the congestion control mechanisms of TCP. TCPassumes that every lost segment is due to congestionand reduces its sending window for each loss. The send-ing window determines the amount of data that can be



transmitted per round-trip time, so this reduces TCP'ssending rate. When the congestion signal is a retrans-mission timeout, the window is reduced more than whatit would be after a fast retransmit. Since header com-pression disables fast retransmit, the window after a losswill be smaller with header compression than without.It is clear that repeated loss of whole sending win-dows combined with additional backo� from the con-gestion control mechanisms of TCP can result in badperformance over lossy links when traditional headercompression is being used.4.6 Ideal, lossless TCP header compression
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Figure 14: Delivered 512 byte segments over WLAN topol-ogy with bit-error rate 2� 10�7.We saw in section 3.5 that the packet loss rate isreduced when headers are smaller. This means thatheader compression can result in higher throughput be-cause TCP's sending window can grow larger betweenlosses. If the compression state can be repaired quickly,header compression will increase throughput for TCPtransfers, as illustrated in Figure 14. The �gure plotsnumber of delivered segments for two TCP transferswhere the better one experiences 18% less packet lossdue to a reduction in header size from 100 bytes to5 bytes. The increase in throughput is about 28%.Thus, lossless header compression, i.e., header compres-sion where no extra packet loss occurs due to headercompression, increases TCP throughput over lossy linkssigni�cantly.4.7 Low-loss TCP header compression andthe twice algorithmTCP header compression reduces throughput overlossy links because the compression state is not updatedproperly when packets are lost. This disables acknowl-edgments, and bandwidth is wasted when segments thatwere unharmed are retransmitted after a timeout. Inthis section we describe mechanisms that speed up up-dating of the compression state. Achieving totally loss-

less header compression may not be feasible. However,we will show that two simple mechanisms achieve low-loss header compression with comparable performancefor bulk data transfers.A decompressor can detect when its compressionstate is inconsistent by using the TCP checksum. Ifit fails, the compression state is deemed inconsistent. Arepair can then be attempted by making an educatedguess on the properties of the loss. The decompressorassumes that the inconsistency is due to a single lostsegment. It then attempts to decompress the receivedcompressed header again on the assumption that thelost segment would have incremented the compressionstate in the same way as the current segment. In thismanner the delta of the current segment is applied twiceto the compression state. If the checksum succeeds, thesegment is delivered to IP and the compression state isconsistent again.Figure 16 shows success rates for this simple mech-anism, called the twice algorithm. The rates were ob-tained by analyzing packet traces from FTP sessionsdownloading a 10 Mbyte �le to a machine at Lule�a Uni-versity. The Long trace is from an ftp site at MIT, theMedium trace from a site in Finland, and the Short andLAN traces from a local ftp site, and a machine on thesame Ethernet, respectively. Figure 15 lists informationabout the traces.Trace RTT (ms) #hops transfer timeLong 125 { 200 14 26 minMedium 27 { 32 6 5 minShort 5 { 18 2 3 minLAN 0 { 1 0 25 secFigure 15: Trace information.The traces contain a number of TCP connections, in-cluding the control connection of FTP. The data and ac-knowledgment streams are listed separately. Each seg-ment in the compressed traces was examined and foreach segment, it was noted whether the twice algorithmwould be able to repair the compression state if thatsegment was lost.The twice algorithm performs very well for datastreams, with success rates close to 100% for theMedium and Short traces. The Long trace is slightlyworse because congestion losses and retransmissionscause varying increments in compressed headers. Forthe LAN trace, the hard disc was the bottleneck of thetransfer. 8192 byte disc blocks were fragmented into�ve 1460 byte segments, 1460 being the MTU of theEthernet, and a remaining segment of 892 bytes. Thisexplains the 66.3% success rate for the data segmentstream, since the twice algorithm fails 2 times for every



6 segments.Trace Data stream Ack streamLong 82.8 45.4Medium 98.6 97.8Short 99.3 39.1LAN 66.3 20.1Figure 16: Success rates (%) for twice algorithm.For acknowledgment streams, the success rates aremuch lower except for the Medium trace. The culprit isthe delayed acknowledgement mechanism of TCP wherethe TCP receiver holds on to an ack, usually 200 ms6,before transmitting it. If additional segments arriveduring this time the ack will include those too. Forthe Long and Short traces, 72.0% and 98.8% of all ac-knowledgments had deltas of one or two times the seg-ment size, respectively. The obvious optimization ofthe twice algorithm, to try multiples of the segment size,would also then reach high success rates for these traces.The combination of varying segment sizes and the de-layed ack mechanism explains the low success rate forthe LAN trace, deltas were usually some low multipleof 1460 plus possibly 892. The most common deltaswere 2920 and 3812. The straightforward optimizationmentioned above would increase the success rate for theLAN trace to 53%.When the twice algorithm fails to repair the com-pression state for an acknowledgment stream, a wholewindow of data will be lost and the TCP sender willreceive a timeout signal and do a slow start. Thus, thelow success rate for acknowledgment streams call foradditional machinery to speed up the repair.Over a wireless link or LAN, it is highly likely thatthe two packet streams constituting a TCP connectionpass through the same nodes on each side. There willthen be a compressor{decompressor pair on each side. Arequest for sending a full header can thus be passed fromdecompressor to compressor by setting a ag in the TCPstream going in the opposite direction. This requirescommunication between compressor and decompressorat both nodes.When the data segment stream is broken, acknowl-edgements stop coming back and there is no full headerfor inserting a header request. So this mechanism willnot work for data segment streams. One way to resolvethis would be to have the decompressor create and for-ward a segment containing a single byte that the TCPreceiver has already seen. This will cause the TCP re-ceiver to send a duplicate acknowledgment in which theheader request can be inserted.6TCP spec allows 500 ms.
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BrokenFigure 17: Header request mechanism.To further improve the situation, the segments re-ceived while the data stream is broken could be storedand decompressed later when a retransmission providesthe missing segments. Adding these two mechanisms,header compression should be practically lossless. How-ever, the twice algorithm performs well on data streams,so it is doubtful whether the extra machinery can be jus-ti�ed. For acknowledgment streams, the request{repairmechanism works well.Having implemented the twice algorithm and the fullheader request mechanism in the simulator, we ran theideal lossless header compression algorithm and the low-loss header compression algorithms against each other.Figure 18 shows a typical result. The two header com-pression curves grow with similar rates, and they areboth signi�cantly better than the curve without headercompression. Sometimes low-loss header compression isactually ahead of the ideal lossless header compression,this is because random e�ects make them experienceslightly di�erent packet losses.
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Figure 18: Delivered 512 byte segments over WLAN topol-ogy with bit-error rate 2� 10�7.4.8 Performance versus bit-error rateWe ran a series of simulations on the WLAN topol-ogy where the bit-error rate varied from 10�4 (on av-erage, one segment in 2 is lost) to 10�9 (on average,one segment in 200 000 is lost). Figure 19 shows the



results for various header compression algorithms. Forreference, the performance without header compressionis also shown.
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"VJ"Figure 19: Delivered 512 byte segments over WLAN topol-ogy in 500 seconds for di�erent header compression algo-rithms and di�erent bit-error rates.We see that the low-loss header compression algo-rithms perform well for all bit-error rates. They beatVJ header compression when the bit-error rate is low,and are better than no header compression when thebit-error rate is high. In particular, for bit-error ratesaround 2� 10�7, low-loss header compression performssigni�cantly better than both of VJ header compressionand no header compression.The curves for the twice algorithm and the twice al-gorithm plus header request are so similar that they can-not be distinguished, which implies that the header re-quest mechanism is not needed when the bit-error prob-ability is uniform and independent. Moreover, the curvefor ideal lossless header compression is almost indistin-guishable from the low-loss curves. This suggests thatit is not possible to improve the low-loss mechanismssigni�cantly.5 Related work and discussionThe �rst work on header compression by Jacobsonresulted in the now familiar VJ header compressionmethod [10], widely used in the Internet today. VJheader compression can compress TCP/IPv4 headersonly, UDP headers are not compressed by his method.Most real-time tra�c in the Internet today uses UDP,so there is a need for compression mechanisms for UDP.Mathur et al [12] has de�ned a header compressionmethod for IPX, that can be adapted to UDP. In theirscheme, compressor and decompressor perform a hand-shake after each full header. Thus, the scheme in [12]cannot be used over simplex links, and the ack implosionproblem makes it hard to adapt for multicast communi-cation. The cost of our scheme compared to handshake-

based schemes is slightly higher in terms of bandwidth,but the ability to use it for multicast and over simplexlinks justi�es this cost.With the coming of IPv6 and Mobile IP, there is aneed to preserve bandwidth over medium-speed lossylinks. For bulk transfers, VJ header compression per-forms badly over such links, and using it actually re-duces throughput. Although the link is less utilized andmore users can be served when there is less overhead,most users will not accept decreased performance. Wehave shown that with extra mechanisms for quick re-pair of compression state, header compression can in-crease TCP throughput signi�cantly over lossy links.This is largely due to the reduced packet loss rate thatallows TCP to increase its sending window more be-tween losses.A number of researchers have worked with increasingTCP throughput over lossy wireless links. One exam-ple is the Berkeley snoop protocol [2], which augmentsTCP by inserting a booster protocol [9] over the wire-less link. The booster protocol stores segments tem-porarily, snoops into segments and acknowledgments todetect what segments are lost, and performs local re-transmissions over the wireless link. This helps increasethe performance of TCP because the congestion controlmechanisms of TCP are less likely to be triggered andthe sending window can open up more than with a stan-dard TCP. The performance of such boosters would beseverely reduced if traditional VJ header compressionwas used because there would be no acknowledgmentsafter a loss.With low-loss header compression, the throughputwith booster protocols should increase. The lowerpacket loss rate is bene�cial because fewer segmentsneed to be retransmitted, and if the booster manages to�ll the link to capacity, the reduced header size promisesa performance increase of around 15% for IPv6 and Mo-bile IP headers. Moreover, booster protocols such as in[2] can bene�t from the decompressor's detailed knowl-edge of when packet losses has occurred. It would makesense to have the decompressor inform the booster pro-tocol of when losses occur, and have the booster tell thecompressor when to send a full header.The twice algorithm seemed to perform badly for theLAN trace, with success rates of 66% for the data streamand 20% for the acknowledgment stream. The bottle-neck, however, was the disc. TCP ran out of data andhad to send a smaller segment at the end of each discblock. It is unlikely that this situation will occur on amedium-speed wireless LAN, where the bottleneck of adata transfer is more likely to be in the network thanthe hard disc.We have used uniformlydistributed bit-error frequen-cies in our simulations. This implies that most packetlosses are for single packets. It is not clear that this is



a good model for a wireless LAN. Two recent studiesof the AT&T WaveLAN [7, 11] have come to slightlydi�erent conclusions. [11] found that withing a room,packet losses does not occur in groups and are uniformlydistributed. For longer distances between rooms packetloss occur in groups of 2-3 packets7. The other study [7]also found that within a room, losses are uniform andfor single packets. This was also true between rooms.Moreover, this latter study found a much lower corre-lation between distance and loss rate than the previousstudy.If it is true that most packet losses occur in groupsof one to three packets, the twice mechanism should beextended to be able to repair one to three lost pack-ets. The compressor can keep track of the consecutivechanges to the TCP header and send an occasional fullheader to ensure that the TCP checksum will detect allinconsistent decompression resulting from such loss.If packet losses occur in long groups, the twice algo-rithm will fail and the compression state is not repaired.However, the header request mechanism and sending anempty data segment to ensure that the TCP receiversends an acknowledgment should improve the situationconsiderably. Temporary storing data segments thatcannot be decompressed for later decompression mayor may not be justi�ed, this is a topic for further study.6 Implementation statusWe have a prototype implementation where UDP isused as the link layer. A modi�ed tcpdump allows us tocapture real packet traces and feed them into the pro-totype for compression and decompression. Processingtimes for the prototype are listed in �gure 20. Timeswere measured using gettimeofday() on a SUN Sparc-5. Little time has been spent optimizing the code ofthe prototype, it is likely that the reported times canbe improved.Header Compressor Decompressoravg extremes avg extremesregular 11 10, 12 7 6, 8full 31 20, 43 16 15, 17compr 35 32, 49 27 24, 29Figure 20: Processing times, microseconds.The reason for the large variation in the processingtimes for compression is that the compressor must �ndthe appropriate compression state before compressing.The implementation performs a linear search over thecompression state of active CIDs, and the processingtime includes this linear search.7In this study, 1400 byte packets were used.

Header compression processing time is low comparedto header transmission time. For example, on a 2 Mbit/slink it takes 0.5 �s to transmit one bit. Total process-ing time for a compressed header is 35 + 27 = 62 �s,which is equivalent to 15.5 bytes. Since a TCP/IPv6header is reduced by about 55 bytes with header com-pression, compressed segments will be delivered soonerwith header compression than without.We are currently implementing IPv6 header compres-sion in the NetBSD kernel, and are planning a Streamsmodule for Sun Microsystems, Inc., Solaris operatingsystem. A current Internet Draft [8] speci�es the de-tails of IPv6 header compression.7 ConclusionThe large headers of IPv6 and Mobile IP threatento reduce the applicability of Internet technology overlow- and medium-speed links. Some delay sensitive ap-plications need to use small packets, for instance remotelogin and real-time audio applications, and the overheadof large headers on small packets can be prohibitive.A natural way to alleviate the problem is to com-press headers. We have shown how to compress UDP/IPheaders, resulting in improved bandwidth e�ciency andreduced packet loss rates over lossy wireless links. Ourmethod, based on soft state and periodic header re-freshes, can be used over simplex links and for multicastcommunication. A new mechanism, Compression Slow-Start, allows quick installation of compression state andhigh compression rates.Since header compression reduces the packet lossrate, using header compression for TCP improvesthroughput over lossy wireless links. With longer timesbetween packet losses, the TCP sending window canopen up more because the congestion control mecha-nisms are not invoked as often. However, the compres-sion state used by the decompressor must be repairedquickly after a loss, and we present two mechanismsfor quick repair of compression state. One mechanismextrapolates what the compression state is likely to beafter a loss is detected. Analysis of packet traces showthat this method is very e�cient. The other mechanismrequests a header refresh by utilizing the TCP streamgoing in the opposite direction.Simulations show that the resulting low-loss headercompression method is better than VJ header compres-sion and better than not doing header compression atall, for bit-error rates from 10�9 to 10�4. Low-lossheader compression is a win, for delay-sensitive applica-tions as well as bulk data transfers.8 AcknowledgmentsWe would like to thank Steve Deering for insight-ful and valuable comments on our speci�cation of IPv6header compression and Bj�orn Gr�onvall for commentingon early versions of this paper. Craig Partridge has ob-
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